Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 20(6): 788-800, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25690569

RESUMO

The ubiquitous AAA+ ATPase p97 functions as a dynamic molecular machine driving several cellular processes. It is essential in regulating protein homeostasis, and it represents a potential drug target for cancer, particularly when there is a greater reliance on the endoplasmic reticulum-associated protein degradation pathway and ubiquitin-proteasome pathway to degrade an overabundance of secreted proteins. Here, we report a case study for using fragment-based ligand design approaches against this large and dynamic hexamer, which has multiple potential binding sites for small molecules. A screen of a fragment library was conducted by surface plasmon resonance (SPR) and followed up by nuclear magnetic resonance (NMR), two complementary biophysical techniques. Virtual screening was also carried out to examine possible binding sites for the experimental hits and evaluate the potential utility of fragment docking for this target. Out of this effort, 13 fragments were discovered that showed reversible binding with affinities between 140 µM and 1 mM, binding stoichiometries of 1:1 or 2:1, and good ligand efficiencies. Structural data for fragment-protein interactions were obtained with residue-specific [U-(2)H] (13)CH3-methyl-labeling NMR strategies, and these data were compared to poses from docking. The combination of virtual screening, SPR, and NMR enabled us to find and validate a number of interesting fragment hits and allowed us to gain an understanding of the structural nature of fragment binding.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ligantes , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Simulação por Computador , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície , Proteína com Valosina
2.
Anesthesiology ; 119(5): 1120-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23748856

RESUMO

BACKGROUND: Mild brain hypothermia (32°-34°C) after human neonatal asphyxia improves neurodevelopmental outcomes. Astrocytes but not neurons have pyruvate carboxylase and an acetate uptake transporter. C nuclear magnetic resonance spectroscopy of rodent brain extracts after administering [1-C]glucose and [1,2-C]acetate can distinguish metabolic differences between glia and neurons, and tricarboxylic acid cycle entry via pyruvate dehydrogenase and pyruvate carboxylase. METHODS: Neonatal rat cerebrocortical slices receiving a C-acetate/glucose mixture underwent a 45-min asphyxia simulation via oxygen-glucose-deprivation followed by 6 h of recovery. Protocols in three groups of N=3 experiments were identical except for temperature management. The three temperature groups were: normothermia (37°C), hypothermia (32°C for 3.75 h beginning at oxygen--glucose deprivation start), and delayed hypothermia (32°C for 3.75 h, beginning 15 min after oxygen-glucose deprivation start). Multivariate analysis of nuclear magnetic resonance metabolite quantifications included principal component analyses and the L1-penalized regularized regression algorithm known as the least absolute shrinkage and selection operator. RESULTS: The most significant metabolite difference (P<0.0056) was [2-C]glutamine's higher final/control ratio for the hypothermia group (1.75±0.12) compared with ratios for the delayed (1.12±0.12) and normothermia group (0.94±0.06), implying a higher pyruvate carboxylase/pyruvate dehydrogenase ratio for glutamine formation. Least Absolute Shrinkage and Selection Operator found the most important metabolites associated with adenosine triphosphate preservation: [3,4-C]glutamate-produced via pyruvate dehydrogenase entry, [2-C]taurine-an important osmolyte and antioxidant, and phosphocreatine. Final principal component analyses scores plots suggested separate cluster formation for the hypothermia group, but with insufficient data for statistical significance. CONCLUSIONS: Starting mild hypothermia simultaneously with oxygen-glucose deprivation, compared with delayed starting or no hypothermia, has higher pyruvate carboxylase throughput, suggesting that better glial integrity is one important neuroprotection mechanism of earlier hypothermia.


Assuntos
Córtex Cerebral/fisiologia , Glucose/deficiência , Hipotermia Induzida , Hipóxia Encefálica/metabolismo , Acetatos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores/metabolismo , Temperatura Corporal , Química Encefálica , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipóxia Encefálica/terapia , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Neuroglia/fisiologia , Neurônios/fisiologia , Fosfocreatina/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Regressão , Ácidos Tricarboxílicos/metabolismo
3.
Pediatr Res ; 74(2): 170-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708689

RESUMO

BACKGROUND: Mild brain hypothermia (31-34 °C) after neonatal hypoxia-ischemia (HI) improves neurodevelopmental outcomes in human and animal neonates. Using an asphyxia model with neonatal mice treated with mild hypothermia after HI, we investigated whether (1)H nuclear magnetic resonance (NMR) metabolomics of brain extracts could suggest biomarkers and distinguish different treatments and outcome groups. METHODS: At postnatal day 7 (P7), CD1 mice underwent right carotid artery occlusion, 30 min of HI (8% oxygen), and 3.5 h of either hypothermia (31 °C) or normothermia (37 °C). Whole brains were frozen immediately after HI, immediately after 3.5 h of hypothermia or normothermia treatments, and 24 h later. Perchloric acid extractions of 36 metabolites were quantified by 900 MHz (1)H NMR spectroscopy. Multivariate analyses included principal component analyses (PCA) and a novel regression algorithm. Histological injury was quantified after HI at 5 d. RESULTS: PCA scores plots separated normothermia/HI animals from hypothermia/HI and control animals, but more data are required for multivariate models to be predictive. Loadings plots identified 11 significant metabolites, whereas the regression algorithm identified 6. Histological injury scores were significantly reduced by hypothermia. CONCLUSION: Different treatment and outcome groups are identifiable by (1)H NMR metabolomics in a neonatal mouse model of mild hypothermia treatment of HI.


Assuntos
Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Metaboloma/fisiologia , Animais , Animais Recém-Nascidos , Espectroscopia de Ressonância Magnética , Metaboloma/genética , Metabolômica , Camundongos , Análise de Componente Principal , Análise de Regressão
4.
J Org Chem ; 77(6): 2819-28, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22321002

RESUMO

As part of a comprehensive investigation on the stereochemical aspects of base-catalyzed 1,2-elimination reactions, we have studied a set of acyclic carbonyl substrates that react by an irreversible E1cB mechanism with largely anti stereospecificity. (2)H NMR data show that these reactions using KOH in EtOH/H(2)O under non-ion-pairing conditions produce a minimum of 85-89% anti elimination on stereospecifically labeled tert-butyl (2R*,3R*)- and (2R*,3S*)-3-(3-trifluoromethylphenoxy)-2,3-(2)H(2)-butanoate, S-tert-butyl (2R*,3R*)- and (2R*,3S*)-3-(3-trifluoromethylphenoxy)-2,3-(2)H(2)-butanethioate, and the related ketones, (4R*,5R*)- and (4R*,5S*)-5-(3-trifluoromethylphenoxy)-4,5-(2)H(2)-3-hexanone. With both diastereomers of each substrate available, the KIEs can be calculated and the innate stereoselectivities determined. The elimination reactions of the ß-3-trifluoromethylphenoxy substrates occur by E1cB mechanisms with diffusionally equilibrated enolate-anion intermediates. Thus, it is clear that anti elimination does not depend solely upon concerted E2 mechanisms. Negative hyperconjugation provides a satisfactory explanation for the anti stereospecificity exhibited by our carbonyl substrates, where the leaving group activates the anti proton, leading to the enolate intermediate. The activation of the anti proton by negative hyperconjugation may also play a role in the concerted pathways of E2 mechanisms. We have also measured the rates of the hydroxide-catalyzed elimination reactions of butanoate, thiobutanoate, and ketone substrates in EtOH/H(2)O, with ß-tosyloxy, acetoxy, and 3-trifluoromethylphenoxy nucleofuges.


Assuntos
Ésteres/química , Cetonas/química , Éteres Fenílicos/química , Compostos de Sulfidrila/química , Compostos de Tosil/química , Catálise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Prótons , Estereoisomerismo
5.
Chem Biol Drug Des ; 78(2): 236-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21575140

RESUMO

The cytochrome P450 isozyme CYP2D6 binds a large variety of drugs, oxidizing many of them, and plays a crucial role in establishing in vivo drug levels, especially in multidrug regimens. The current study aimed to develop reliable predictive models for estimating the CYP2D6 inhibition properties of drug candidates. Quantitative structure-activity relationship (QSAR) studies utilizing 51 known CYP2D6 inhibitors were carried out. Performance achieved using models based on two-dimensional (2D) molecular descriptors was compared with performance using models entailing additional molecular descriptors that depend upon the three-dimensional (3D) structure of ligands. To properly compute the descriptors, all the 3D inhibitor structures were optimized such that induced-fit binding of the ligand to the active site was accommodated. CODESSA software was used to obtain equations for correlating the structural features of the ligands to their pharmacological effects on CYP2D6 (inhibition). The predictive power of all the QSAR models obtained was estimated by applying rigorous statistical criteria. To assess the robustness and predictability of the models, predictions were carried out on an additional set of known molecules (prediction set). The results showed that only models incorporating 3D descriptors in addition to 2D molecular descriptors possessed the requisite high predictive power for CYP2D6 inhibition.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Ligantes , Modelos Moleculares , Citocromo P-450 CYP2D6/química , Inibidores do Citocromo P-450 CYP2D6 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Modelos Biológicos , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
6.
J Cereb Blood Flow Metab ; 31(2): 547-59, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20717124

RESUMO

Human clinical trials using 72 hours of mild hypothermia (32°C-34°C) after neonatal asphyxia have found substantially improved neurologic outcomes. As temperature changes differently modulate numerous metabolite fluxes and concentrations, we hypothesized that (1)H/(31)P nuclear magnetic resonance (NMR) spectroscopy of intracellular metabolites can distinguish different insults, treatments, and recovery stages. Three groups of superfused neonatal rat brain slices underwent 45 minutes oxygen-glucose deprivation (OGD) and then were: treated for 3 hours with mild hypothermia (32°C) that began with OGD, or similarly treated with hypothermia after a 15-minute delay, or not treated (normothermic control group, 37°C). Hypothermia was followed by 3 hours of normothermic recovery. Slices collected at different predetermined times were processed, respectively, for 14.1 Tesla NMR analysis, enzyme-linked immunosorbent assay (ELISA) cell-death quantification, and superoxide production. Forty-nine NMR-observable metabolites underwent a multivariate analysis. Separated clustering in scores plots was found for treatment and outcome groups. Final ATP (adenosine triphosphate) levels, severely decreased at normothermia, were restored equally by immediate and delayed hypothermia. Cell death was decreased by immediate hypothermia, but was equally substantially greater with normothermia and delayed hypothermia. Potentially important biomarkers in the (1)H spectra included PCr-(1)H (phosphocreatine in the (1)H spectrum), ATP-(1)H (adenosine triphosphate in the (1)H spectrum), and ADP-(1)H (adenosine diphosphate in the (1)H spectrum). The findings suggest a potential role for metabolomic monitoring during therapeutic hypothermia.


Assuntos
Animais Recém-Nascidos/fisiologia , Asfixia/metabolismo , Química Encefálica/fisiologia , Glucose/deficiência , Hipotermia Induzida , Hipóxia/terapia , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/fisiologia , Fragmentação do DNA , Interpretação Estatística de Dados , Ensaio de Imunoadsorção Enzimática , Marcação In Situ das Extremidades Cortadas , Espectroscopia de Ressonância Magnética , Percloratos/química , Isótopos de Fósforo , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo
7.
New J Chem ; 34(5): 910-917, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20689681

RESUMO

The growing number of high-resolution crystal structures of large RNA molecules provides much information for understanding the principles of structural organization of these complex molecules. Several in-depth analyses of nucleobase-centered RNA structural motifs and backbone conformations have been published based on this information, including a systematic classification of base pairs by Leontis and Westhof. However, hydrogen bonds involving sugar-phosphate backbone atoms of RNA have not been analyzed systematically until recently, although such hydrogen bonds appear to be common both in local and tertiary interactions. Here we review some backbone structural motifs discussed in the literature and analyze a set of eight high-resolution multi-domain RNA structures. The analyzed RNAs are highly structured: among 5372 nucleotides in this set, 89% are involved in at least one "long-range" RNA-RNA hydrogen bond, i.e., hydrogen bonds between atoms in the same residue or sequential residues are ignored. These long-range hydrogen bonds frequently use backbone atoms as hydrogen bond acceptors, i.e., OP1, OP2, O2', O3', O4', or O5', or as a donor (2'OH). A surprisingly large number of such hydrogen bonds are found, considering that neither single-stranded nor double-stranded regions will contain such hydrogen bonds unless additional interactions with other residues exist. Among 8327 long-range hydrogen bonds found in this set of structures, 2811, or about one-third, are hydrogen bonds entailing RNA backbone atoms; they involve 39% of all nucleotides in the structures. The majority of them (2111) are hydrogen bonds entailing ribose hydroxyl groups, which can be used either as a donor or an acceptor; they constitute 25% of all hydrogen bonds and involve 31% of all nucleotides. The phosphate oxygens OP1 or OP2 are used as hydrogen bond acceptors in 12% of all nucleotides, and the ribose ring oxygen O4' and phosphodiester oxygens O3' and O5' are used in 4%, 4%, and 1% of all nucleotides, respectively. Distributions of geometric parameters and some examples of such hydrogen bonds are presented in this report. A novel motif involving backbone hydrogen bonds, the ribose-phosphate zipper, is also identified.

8.
Biochemistry ; 49(30): 6341-51, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20565056

RESUMO

As a retrovirus, the human immunodeficiency virus (HIV-1) packages two copies of the RNA genome as a dimer in the infectious virion. Dimerization is initiated at the dimer initiation site (DIS) which encompasses stem-loop 1 (SL1) in the 5'-UTR of the genome. Study of genomic dimerization has been facilitated by the discovery that short RNA fragments containing SL1 can dimerize spontaneously without any protein factors. On the basis of the palindromic nature of SL1, a kissing loop model has been proposed. First, a metastable kissing dimer is formed via standard Watson-Crick base pairs and then converted into a more stable extended dimer by the viral nucleocapsid protein (NCp7). This dimer maturation in vitro is believed to mimic initial steps in the RNA maturation in vivo, which is correlated with viral infectivity. We previously discovered a small molecule activator, Lys-Ala-7-amido-4-methylcoumarin (KA-AMC), which facilitates dimer maturation in vitro, and determined aspects of its structure-activity relationship. In this report, we present measurements of the binding affinity of the activators and characterization of their interactions with the SL1 RNA. Guanidinium groups and increasing positive charge on the side chain enhance affinity and activity, but features in the aromatic ring at least partially decouple affinity from activity. Although KA-AMC can bind to multiple structural motifs, the NMR study showed KA-AMC preferentially binds to unique structural motifs, such as the palindromic loop and the G-rich internal loop in the SL1 RNA. NCp7 binds to SL1 only 1 order of magnitude more tightly than the best small molecule ligand tested. This study provides guidelines for the design of superior small molecules that bind to the SL1 RNA that have the potential of being developed as an antiviral by interfering with SL1-NCp7 interaction at the packaging and/or maturation stages.


Assuntos
HIV-1/genética , Proteínas do Nucleocapsídeo/farmacologia , RNA Viral/química , Sítios de Ligação , Cumarínicos/farmacologia , Dimerização , Dipeptídeos/farmacologia , HIV-1/química , Humanos , Espectroscopia de Ressonância Magnética , Mimetismo Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Viral/efeitos dos fármacos , Relação Estrutura-Atividade
9.
RNA ; 15(6): 1219-30, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19369428

RESUMO

With an increasing interest in RNA therapeutics and for targeting RNA to treat disease, there is a need for the tools used in protein-based drug design, particularly DOCKing algorithms, to be extended or adapted for nucleic acids. Here, we have compiled a test set of RNA-ligand complexes to validate the ability of the DOCK suite of programs to successfully recreate experimentally determined binding poses. With the optimized parameters and a minimal scoring function, 70% of the test set with less than seven rotatable ligand bonds and 26% of the test set with less than 13 rotatable bonds can be successfully recreated within 2 A heavy-atom RMSD. When DOCKed conformations are rescored with the implicit solvent models AMBER generalized Born with solvent-accessible surface area (GB/SA) and Poisson-Boltzmann with solvent-accessible surface area (PB/SA) in combination with explicit water molecules and sodium counterions, the success rate increases to 80% with PB/SA for less than seven rotatable bonds and 58% with AMBER GB/SA and 47% with PB/SA for less than 13 rotatable bonds. These results indicate that DOCK can indeed be useful for structure-based drug design aimed at RNA. Our studies also suggest that RNA-directed ligands often differ from typical protein-ligand complexes in their electrostatic properties, but these differences can be accommodated through the choice of potential function. In addition, in the course of the study, we explore a variety of newly added DOCK functions, demonstrating the ease with which new functions can be added to address new scientific questions.


Assuntos
RNA/química , Software , Algoritmos , Sítios de Ligação , Ligantes , Modelos Moleculares , RNA/metabolismo
10.
J Med Chem ; 51(22): 7205-15, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18950148

RESUMO

The human ribonucleoprotein telomerase is a validated anticancer drug target, and hTR-P2b is a part of the human telomerase RNA (hTR) essential for its activity. Interesting ligands that bind hTR-P2b were identified by iteratively using a tandem structure-based approach: docking of potential ligands from small databases to hTR-P2b via the program MORDOR, which permits flexibility in both ligand and target, with subsequent NMR screening of high-ranking compounds. A high percentage of the compounds tested experimentally were found via NMR to bind to the U-rich region of hTR-P2b; most have MW < 500 Da and are from different compound classes, and several possess a charge of 0 or +1. Of the 48 ligands identified, 24 exhibit a decided preference to bind hTR-P2b RNA rather than A-site rRNA and 10 do not bind A-site rRNA at all. Binding affinity was measured by monitoring RNA imino proton resonances for some of the compounds that showed hTR binding preference.


Assuntos
Simulação por Computador , Bases de Dados Factuais , Descoberta de Drogas/métodos , RNA/química , RNA/metabolismo , Telomerase/química , Telomerase/metabolismo , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peso Molecular , Fenotiazinas/química , Fenotiazinas/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Padrões de Referência , Relação Estrutura-Atividade
11.
J Biol Chem ; 283(42): 28757-66, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18701464

RESUMO

Poly(C)-binding proteins (PCBPs) are important regulatory proteins that contain three KH (hnRNP K homology) domains. Binding poly(C) D/RNA sequences via KH domains is essential for multiple PCBP functions. To reveal the basis for PCBP-D/RNA interactions and function, we determined the structure of a construct containing the first two domains (KH1-KH2) of human PCBP2 by NMR. KH1 and KH2 form an intramolecular pseudodimer. The large hydrophobic dimerization surface of each KH domain is on the side opposite the D/RNA binding interface. Chemical shift mapping indicates both domains bind poly(C) DNA motifs without disrupting the KH1-KH2 interaction. Spectral comparison of KH1-KH2, KH3, and full-length PCBP2 constructs suggests that the KH1-KH2 pseudodimer forms, but KH3 does not interact with other parts of the protein. From NMR studies and modeling, we propose possible modes of cooperative binding tandem poly(C) motifs by the KH domains. D/RNA binding may induce pseudodimer dissociation or stabilize dissociated KH1 and KH2, making protein interaction surfaces available to PCBP-binding partners. This conformational change may represent a regulatory mechanism linking D/RNA binding to PCBP functions.


Assuntos
Regulação da Expressão Gênica , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , DNA/química , Dimerização , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
12.
Biochemistry ; 47(31): 8148-56, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18616287

RESUMO

The type 1 human immunodeficiency virus (HIV-1), like all retroviruses, contains two copies of the RNA genome as a dimer. A dimer initially forms via a self-complementary sequence in the dimer initiation site (DIS) of the genomic RNA, but that dimer is converted to a mature dimer in a process generally promoted by the viral nucleocapsid (NC) protein. Formation of the mature dimer is correlated with infectivity. Study of genomic dimerization has been facilitated by discovery of short RNA transcripts containing the DIS stem-loop 1 (SL1), which can dimerize spontaneously without any protein factors in vitro as well as via the NC protein. On the basis of the palindromic nature of the apical loop of SL1, a kissing loop model has been proposed. First, a metastable kissing dimer is formed via a loop-loop interaction and then converted into a more stable extended dimer by the NC protein. This dimerization process in vitro is believed to mimic the in vivo RNA maturation. During experimental screening of potential inhibitors, we discovered a small molecule, Lys-Ala-7-amido-4-methylcoumarin (KA-AMC), which facilitates the in vitro conversion from kissing dimer to extended dimer. Here we report the structure-activity relationship for KA-AMC for promoting dimer maturation. Guanidino groups and increasing positive charge on the side chain enhance activity. For activity, the charged side chain is preferred on the benzene ring, and O 1 in the coumarin scaffold is essential. NMR studies show that the coumarin derivatives stack with aromatic bases of the RNA. The coumarin derivatives may aid in the investigation of some aspects of dimer maturation and serve as a scaffold for design of maturation inhibitors or of activators of premature maturation, either of which can lead to a potential HIV therapeutic.


Assuntos
Cumarínicos/química , HIV-1/genética , RNA Viral/química , Cumarínicos/farmacologia , Dimerização , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Viral/genética , Relação Estrutura-Atividade
13.
J Chem Inf Model ; 48(6): 1257-68, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18510306

RESUMO

Structure-based drug design is now well-established for proteins as a key first step in the lengthy process of developing new drugs. In many ways, RNA may be a better target to treat disease than a protein because it is upstream in the translation pathway, so inhibiting a single mRNA molecule could prevent the production of thousands of protein gene products. Virtual screening is often the starting point for structure-based drug design. However, computational docking of a small molecule to RNA seems to be more challenging than that to protein due to the higher intrinsic flexibility and highly charged structure of RNA. Previous attempts at docking to RNA showed the need for a new approach. We present here a novel algorithm using molecular simulation techniques to account for both nucleic acid and ligand flexibility. In this approach, with both the ligand and the receptor permitted some flexibility, they can bind one another via an induced fit, as the flexible ligand probes the surface of the receptor. A possible ligand can explore a low-energy path at the surface of the receptor by carrying out energy minimization with root-mean-square-distance constraints. Our procedure was tested on 57 RNA complexes (33 crystal and 24 NMR structures); this is the largest data set to date to reproduce experimental RNA binding poses. With our procedure, the lowest-energy conformations reproduced the experimental binding poses within an atomic root-mean-square deviation of 2.5 A for 74% of tested complexes.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , RNA/química , RNA/metabolismo , Sítios de Ligação , Ligantes , Modelos Moleculares , Conformação Molecular , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Reprodutibilidade dos Testes , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 105(7): 2391-6, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268334

RESUMO

Dicer, an RNase III enzyme, initiates RNA interference by processing precursor dsRNAs into mature microRNAs and small-interfering RNAs. It is also involved in loading and activation of the RNA-induced silencing complex. Here, we report the crystal structures of a catalytically active fragment of mouse Dicer, containing the RNase IIIb and dsRNA binding domains, in its apo and Cd(2+)-bound forms, at 1.68- and 2.8-A resolution, respectively. Models of this structure with dsRNA reveal that a lysine residue, highly conserved in Dicer RNase IIIa and IIIb domains and in Drosha RNase IIIb domains, has the potential to participate in the phosphodiester bond cleavage reaction by stabilizing the transition state and leaving group of the scissile bond. Mutational and enzymatic assays confirm the importance of this lysine in dsRNA cleavage, suggesting that this lysine represents a conserved catalytic residue of Dicers. The structures also reveals a approximately 45-aa region within the RNase IIIb domain that harbors an alpha-helix at the N-terminal half and a flexible loop at the C-terminal half, features not present in previously reported structures of homologous RNase III domains from either bacterial RNase III enzymes or Giardia Dicer. N-terminal residues of this alpha-helix have the potential to engage in minor groove interaction with dsRNA substrates.


Assuntos
Lisina/metabolismo , RNA de Cadeia Dupla/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Lisina/genética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ribonuclease III/genética , Alinhamento de Sequência , Homologia Estrutural de Proteína
15.
Nat Rev Drug Discov ; 7(9): 738-45, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19172689

RESUMO

In the past decade, the potential of harnessing the ability of nuclear magnetic resonance (NMR) spectroscopy to monitor intermolecular interactions as a tool for drug discovery has been increasingly appreciated in academia and industry. In this Perspective, we highlight some of the major applications of NMR in drug discovery, focusing on hit and lead generation, and provide a critical analysis of its current and potential utility.


Assuntos
Descoberta de Drogas/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica
16.
Nucleic Acids Res ; 35(18): 6150-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17827211

RESUMO

Telomerase maintains the integrity of telomeres, the ends of linear chromosomes, by adding G-rich repeats to their 3'-ends. Telomerase RNA is an integral component of telomerase. It contains a template for the synthesis of the telomeric repeats by the telomerase reverse transcriptase. Although telomerase RNAs of different organisms are very diverse in their sequences, a functional non-template element, a pseudoknot, was predicted in all of them. Pseudoknot elements in human and the budding yeast Kluyveromyces lactis telomerase RNAs contain unusual triple-helical segments with AUU base triples, which are critical for telomerase function. Such base triples in ciliates have not been previously reported. We analyzed the pseudoknot sequences in 28 ciliate species and classified them in six different groups based on the lengths of the stems and loops composing the pseudoknot. Using miniCarlo, a helical parameter-based modeling program, we calculated 3D models for a representative of each morphological group. In all cases, the predicted structure contains at least one AUU base triple in stem 2, except for that of Colpidium colpoda, which contains unconventional GCG and AUA triples. These results suggest that base triples in a pseudoknot element are a conserved feature of all telomerases.


Assuntos
Cilióforos/genética , Modelos Moleculares , RNA de Protozoário/química , RNA/química , Telomerase/química , Animais , Sequência de Bases , Sequência Conservada , Conformação de Ácido Nucleico , RNA/classificação , RNA de Protozoário/classificação , Telomerase/classificação , Tetrahymenina/genética
17.
Anesthesiology ; 107(4): 630-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17893460

RESUMO

BACKGROUND: Exogenous pyruvate and ethyl pyruvate (EP), the key ingredient in a new Ringer's solution in clinical trials, are antioxidants as well as metabolic substrates. In vivo studies show both to be protective in oxidative stress, with EP being better. The authors used an acute rat brain slice preparation to compare EP and pyruvate rescue after H(2)O(2) oxidative stress, asking whether EP was again better and whether its actions were exclusively metabolic. METHODS: Oxygenated neonatal P7 cerebrocortical slices were exposed for 1 h to 2 mM H(2)O(2), and recovered for 4 h with artificial cerebrospinal fluid having 2 mM glucose and (1) 20 mM EP, (2) 20 mM pyruvate, or (3) 1 mM of the nonmetabolizable radical scavenger N-tert-butyl-alpha-phenylnitrone (PBN). Perchloric acid extracts were studied with 31P/1H nuclear magnetic resonance at 14.1 T. Acute cell injury was assessed by counting terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL)-stained cells. RESULTS: At the end of recovery, preservation of adenosine triphosphate and N-acetylaspartate was better with EP than with pyruvate. Adenosine triphosphate preservation was best when PBN and EP were coadministered. 1H nuclear magnetic resonance revealed changes in lactate, alanine, gamma-aminobutyric acid, glutamate, glutamine, succinate, taurine, and myoinositol. Two-dimensional [1H-13C] heteronuclear single quantum coherence spectroscopy found that 13C-EP administration produced the same tricarboxylic acid metabolites as C-pyruvate. TUNEL-positive cell percentages with EP were less than half of those for PBN or pyruvate rescue (P < 0.05). CONCLUSION: EP enters cells, provides pyruvate as a tricarboxylic acid substrate, and is more protective. Although EP provides metabolic protection of adenosine triphosphate levels, it does not maximize antioxidant protection.


Assuntos
Animais Recém-Nascidos/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Contagem de Células , Ciclo do Ácido Cítrico/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Percloratos/metabolismo , Ratos , Ratos Sprague-Dawley
18.
RNA ; 13(7): 1043-51, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17526645

RESUMO

Poly(C)-binding proteins (PCBPs) are KH (hnRNP K homology) domain-containing proteins that recognize poly(C) DNA and RNA sequences in mammalian cells. Binding poly(C) sequences via the KH domains is critical for PCBP functions. To reveal the mechanisms of KH domain-D/RNA recognition and its functional importance, we have determined the crystal structures of PCBP2 KH1 domain in complex with a 12-nucleotide DNA corresponding to two repeats of the human C-rich strand telomeric DNA and its RNA equivalent. The crystal structures reveal molecular details for not only KH1-DNA/RNA interaction but also protein-protein interaction between two KH1 domains. NMR studies on a protein construct containing two KH domains (KH1 + KH2) of PCBP2 indicate that KH1 interacts with KH2 in a way similar to the KH1-KH1 interaction. The crystal structures and NMR data suggest possible ways by which binding certain nucleic acid targets containing tandem poly(C) motifs may induce structural rearrangement of the KH domains in PCBPs; such structural rearrangement may be crucial for some PCBP functions.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Poli C/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Poli C/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , Homologia de Sequência de Aminoácidos
20.
Nucleic Acids Res ; 35(8): 2651-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17426136

RESUMO

KH (hnRNP K homology) domains, consisting of approximately 70 amino acid residues, are present in a variety of nucleic-acid-binding proteins. Among these are poly(C)-binding proteins (PCBPs), which are important regulators of mRNA stability and posttranscriptional regulation in general. All PCBPs contain three different KH domains and recognize poly(C)-sequences with high affinity and specificity. To reveal the molecular basis of poly(C)-sequence recognition, we have determined the crystal structure, at 1.6 A resolution, of PCBP2 KH3 domain in complex with a 7-nt DNA sequence (5'-AACCCTA-3') corresponding to one repeat of the C-rich strand of human telomeric DNA. The domain assumes a type-I KH fold in a betaalphaalphabetabetaalpha configuration. The protein-DNA interface could be studied in unprecedented detail and is made up of a series of direct and water-mediated hydrogen bonds between the protein and the DNA, revealing an especially dense network involving several structural water molecules for the last 2 nt in the core recognition sequence. Unlike published KH domain structures, the protein crystallizes without protein-protein contacts, yielding new insights into the dimerization properties of different KH domains. A nucleotide platform, an interesting feature found in some RNA molecules, was identified, evidently for the first time in DNA.


Assuntos
DNA/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , Telômero/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...